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Head-on Collisions of Waves in an Excitable FitzHugh}Nagumo System:
a Transition from Wave Annihilation to Classical Wave Behavior
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For the particular case of an excitable FitzHugh}Nagumo system with di!usion, we investi-
gate the transition from annihilation to crossing of the waves in the head-on collision. The
analysis exploits the similarity between the local and the global phase portraits of the system.
We "nd that the transition has features typical of the nucleation theory of "rst-order phase
transitions, and may be understood through purely geometrical arguments. In the case of
periodic boundary conditions, the transition is an in"nite-dimensional analog of the creation
and the vanishing of limit cycles via a homoclinic Andronov bifurcation. Both before and after
the transition, the behavior of a single cell continues to be typical for excitable systems: a stable
equilibrium state, and a threshold above which an excitation pulse can be induced. The
generality and qualitative character of our argument shows that the phenomenon described
can be observed in excitable systems well beyond the particular case presented here.
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1. Introduction

When nonlinear waves in the nerve or muscle
"bers or in the heart collide with each other, they
mutually annihilate (Tasaki, 1949; Wiener &
Rosenblueth, 1946; Krinsky, 1984; Krinsky et al.,
1991; Keener & Sneyd, 1998). There are, however,
cases where the experiment and theory have
shown that the inelasticity of the collisions is not
that drastic. Both in reaction}di!usion systems
(Rotermund et al., 1991) and in hydrodynamics
(Santiago et al., 1997), there is now evidence of
a variable degree of inelasticity in collisions as
well as in re#ections. For example, when two
such non-linear dissipative waves collide oblique-
ly in bi-dimensional medium, one or two waves
may re-emerge with trajectories altered or phase-
shifted, relative to the pre-collision paths
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(Santiago et al., 1997). In head-on collisions,
equivalent to one-dimensional collisions, evid-
ence also exists that the waves may cross each
other (Legrand, 1987; Meinhardt, 1995; Aslandi
& Mornev, 1996, 1997, 1999; Mornev et al., 1996;
Santiago et al., 1997; Argentina et al., 1997).

These kinematic features are similar to charac-
teristic properties of solitons in conservative me-
dia (Zabusky & Kruskal, 1965). In the present
paper, we consider the collision properties of
nonlinear waves in an excitable medium of Fitz-
Hugh}Nagumo type, which is paradigmatic to
account for quite a variety of biological, bio-
chemical and neurobiological phenomena. In
particular, we discuss one-dimensional collisions
and show under which circumstances when
waves or pulses collide, they may cross each other
and hence do not annihilate. Note that the
space}time plot of a head-on collision mimics an
oblique collision in real space or a re#ection of
a wave with a wall.
( 2000 Academic Press



FIG. 1. Phase portrait of FitzHugh}Nagumo model (2).
There is bistability between the limit cycle , and stable
"xed point whose basin of attraction is plotted in . The
nullclines f (u, v)"!v!u (u!1) (u!a) and g (u, v)"
u!bv are shown in . Parameters are: e"0.015, b"3.5
and a!0.045.
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In Section 2, we pose the model problem to
be studied and we show the properties of its
underlying dynamical system and the in#uence of
di!usion. Section 3 is devoted to a geometric
description of the phenomena related to non-an-
nihilating head-on collisions. Finally in Section 4,
we summarize the essence of our results and
argue about its universality.

2. Collision of Excitable Waves
in the FHN Model

We use the one-dimensional FitzHugh}Nagumo
model (FHN) with non-zero di!usion coe$cients
for both species (FitzHugh, 1961; Nagumo et al.,
1962):

u
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"!v!u(u!1) (u!a)#u

xx
,
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"e(u!bv)#dv
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The variables u and v represent the activator and
inhibitor, respectively. The parameter e measures
the ratio of the time-scales associated to each of
the variables, and is usually a smallness para-
meter.

The excitable behavior is controlled by the
parameter a, and the ratio of the di!usivities is
given by d. For instance, for the Belousov}
Zhabotinsky chemical reaction (Zhabotinskyii,
1974), d&1 whereas for problems with biological
membranes, d is practically vanishing.

3. Di4usionless Problem and
its Underlying Dynamical System

For the homogeneous system obtained by
neglecting di!usion in eqn (1), we have

u
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(2)
v
t
"e (u!bv).

The origin is steady solution, or "xed point,
that becomes unstable (Andronov}Hopf bifurca-
tion) when a#eb"0.

When b'4/(a!1)2, the saddle-node bifurca-
tion yields two new "xed points: p"(u

`
, u

`
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q"(u
~
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~
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$
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Following (Argentina et al., 1997), we will in-

vestigate the phase portrait of system 2 when
a limit cycle and a stable "xed point coexist
(Fig. 1).

Let us assume that the origin is the only stable
"xed point. When we vary the parameter a, an
Andronov}Hopf bifurcation occurs (Andronov
et al., 1971).

The birth of the limit cycle may be either super-
or sub-critical. For the latter case, this provides
a range of parameter values leading to the sought
bistability.

4. The Role of Di4usion

We numerically calculated solutions of the full
eqn (1) with the Runge}Kutta method, approxi-
mating spatial derivatives by centered "nite dif-
ferences. Six hundred points were used for spatial
discretization. Typical time step was 0.1, and size
of the spatial domain was 300.

For the usual parameter regime where excit-
ability is expected (i.e. when the homogeneous
dynamical system possesses at least one stable
attractor, the trivial "xed point) the parameter
a must be small and positive to insure propaga-
tion of pulses (Rinzel & Keller, 1973; Zykov,
1987). As bistability requires negative values of
a that may prevent the existence of solitary
waves, we "rst verify that excitable waves do
propagate in this bistable medium. If d"0, local-
ized perturbations create localized oscillatory



FIG. 2. Comparison between the stationary solution C(x)
computed with a variant of a shooting method (*) and the
quasi-stationary solution (L) obtained while two pulses were
colliding.

HEAD-ON COLLISIONS OF WAVES 49
solutions (and not a solitary wave) spreading
over the whole domain. If dO0, competition
between the di!usion, and the ampli"cation due
to the local dynamics of eqn (2) towards the
stable limit cycle, enables propagation of pulses
for a "nite range of values of d. This is the essence
of an argument developed long ago by Taylor
and Burgers to justify the stable propagation
of nonlinear dissipative localized disturbances
like shocks (Whitham, 1974). On the one hand,
for d)0.85, the pulses are metastable and
more than two waves may emerge after a head-on
collision. After many collisions, a train of
waves spreading over the spatial domain be-
comes unstable and generates synchronized
oscillations in space. On the other hand, for d
su$ciently large d*1.30, di!usion tends to
suppress the waves.

To study numerically the collisions of excitable
waves, we take a large enough spatial domain
such that we could assume it unbounded.

We "rst investigate a localized perturbation
of the trivial state placed in the center of
the domain. Depending on the size and the
amplitude of the perturbation, the excitation may
disappear or be ampli"ed to create a pair of
excitable pulses.

If the perturbation is big enough, after a transi-
ent regime, two waves emerge and propagate
towards the boundaries. There is a barrier that
must be overcome in order to produce localized
propagating solutions. This is a nucleation mani-
fold (or ignition manifold) that acts as a separat-
rix. From the dynamical systems point of view,
such barrier is just a manifold that divides the
functional phase portrait into two regions.

For "xed values of e, b, and d, and for various
values of a, the predicted outcome of the head-on
collision of waves or pulses is the following. If Da D
is small enough, the two waves disappear after
a head-on collision as in most excitable media.

If Da D becomes big enough, the two waves cross
each other. If one approaches the critical value of
a when the transition occurs, the two waves co-
alesce during the collision into a nearly station-
ary solution.

Then, depending on the value of a, after a "nite
time, the two waves may be re-emitted. In the
functional phase portrait, this suggests that the
#ow passes very near a "xed point.
5. Steady States, Nucleation Solution and
the Geometrical Picture

Stationary solutions of eqn (1) obey the follow-
ing equations:

u
xx
"v#u (u!a) (a!1),

v
xx
"

e
d

(bv!u).
(3)

Let us call C(x) a solution that at in"nity tends
towards the motionless or the trivial state.

Using a variant of a shooting method, C(x)
is computed (Press et al., 1992). This solution
is compared in Fig. 2 with the pro"le of the
variable u (the collision solution) during the
collision process followed by a direct simulation
of eqn (1).

The two solutions are nearly the same, thus the
collision solution is a "xed point in the functional
phase portrait.

Let us investigate its stability.
The computation of the spectrum has been

performed using a "nite-di!erence scheme to ap-
proximate the spatial derivatives.

The spectrum should have a zero eigenvalue
that corresponds to the eigenfunction (C

u
x, C

v
x),

since the problem is invariant under translation.
Note that this eigenvalue shows the existence

of a continuous family of nucleation solutions
parametrized by its position in the domain. This
eigenvalue found numerically is 3]10~3 rather
than zero, which provides an estimate of the
accuracy of the numerical scheme.



FIG. 3. Linear stability analysis of the stationary solution
that connects the rest state. It is seen that this solution is
unstable but possesses just one eigenvalue that is positive.
The complex eigenvalues near the imaginary axis belongs to
the continuous spectrum and plays no role for the stability
here.
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The spectrum is presented in Fig. 3. It appears
that the stationary solution is unstable and
possesses just one eigenvalue with positive real
part.

Thus, the codimension-one center stable mani-
fold of the stationary solution acts as a separat-
rix, and C(x) can be considered as a nucleation
solution, i.e. the critical drop permitting the cre-
ation of pulses.

An analytical computation shows that the
complex eigenvalues near the imaginary axis be-
long to the continuous spectrum whose eigenvec-
tors oscillate periodically at in"nity with a low
wave number.

These eigenvalues play no role for this
transition if one is considering localized per-
turbations, hence the negative eigenvalue, whose
eigenvector is localized, and closest to the imagi-
nary axis (j

~
K!0.063) governs the stable dy-

namics. The phase portrait is therefore split into
two regions corresponding to two di!erent evolu-
tions for a given initial condition of system 1.

If the homogeneous trivial state is perturbed,
depending on the position of the #ow in the phase
portrait, two pulses may emerge or not. When
pulses are created, the corresponding #ow is
nearly de"ned by the unstable manifold=

u
(x) of

the nucleation solution, and pulses propagate
towards the boundaries.

Take now two pulses propagating in our in"-
nite domain and colliding. There is crossing and
hence non-annihilation if the collision solution is
able to re-emit the pulses. We do not consider the
case when only one pulse is re-emitted, following
a collision (Santiago et al., 1997).

Geometrically, the transition appears asso-
ciated with the relative position of the one-di-
mensional collision manifold de"ned by the two
colliding waves, relative to the stable manifold of
the nucleation solution. The threshold of the
transition is associated with the fusion of these
two manifolds.

When the spatial domain is periodic, and two
pulses initiated in the center of the domain arrive
at the boundaries, then they collide.

Once again, depending on the position of the
collision solution in the functional phase portrait,
the two pulses may be re-emitted after the colli-
sion. This solution is a perturbation of C(x@),
where x@"x!¸/2 and ¸ is the size of the do-
main. Let us denote by=

u
(x) the unstable mani-

fold of the nucleation solution C(x). The
transition is related to the connection of the un-
stable manifold =

u
(x) with the center stable

manifold =
s
(x@). The evolution depends on the

location of=
u
(x) on either of the two sides of the

separatrix provided by the center stable manifold
=

s
(x@) of C(x@). Accordingly,

z If the unstable manifold=
u
(x) goes between the

"xed point O and the center stable manifold
=

s
(x@) as shown in Fig. 4(a), the system decays

to the stable stationary state.
This is the standard phase portrait for dy-

namics of solitary waves in excitable media.
The product of a collision is not big enough to
recreate the two pulses.

z If =
u
(x) becomes=

s
(x@) as shown in Fig. 4(b),

the motion is a heteroclinic orbit connecting
the two nucleation solutions C(x) and C(x@). In
this case, the product of a collision corresponds
exactly to the nucleation solution.

z If =
u
(x) goes behind =

s
(x@) as shown in

Fig. 4(c), the motion becomes periodic like the
resulting #ow of an Andronov homoclinic bi-
furcations (Andronov et al., 1971). This solu-
tion is highly anharmonic, since the #ow passes
close to the two saddle points C (x) and C(x@).
Consequently, the collision can last a long time
[as seen in Fig. 4(b)]. Here, the product of
a collision is big enough to re-excite the system
and hence the re-emission of the two waves.



FIG. 4. Qualitative phase portrait of the partial di!eren-
tial equation (1). The right column shows colliding pulses in
the middle of the domain, so all the functions depend on
x@"x!¸/2. The left column shows the same event at
the boundaries. (a) When the unstable manifold=

u
(x) of the

nucleation solution is not able to enter tangently to the
center stable one=

s
(x@), the pulses do not cross each other.

Such phase portrait is the classic phase portrait for excitable
systems. (b) At the bifurcation point, the unstable manifold
of the nucleation solution=

u
(x) goes into the center stable

one =
s
(x@), and a heteroclinic loop appears. (c) Once the

Andronov homoclinic bifurcation has been obtained,
the pulses collide periodically in the spatial domain, and the
attractor is a stable limit cycle. The gray surfaces are the
nucleation manifolds. The point 0 is the rest state.
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6. Conclusion and Outlook

The main result of this work can be formulated
in a clearly intuitive way. It is associated to a
&&nucleation drop'' well known in "rst-order
phase transitions. The result of the collision de-
pends upon whether the nucleation drop is cre-
ated. If the nucleation drop is not created, then
the waves annihilate themselves after the colli-
sion. If the nucleation drop is created, two new
waves are generated. They propagate away from
the collision place, and the "nal result is that the
waves crossed each other and did not mutually
annihilate. The geometrical arguments show that
the transition from wave preservation to wave
annihilation is associated to a Andronov homoc-
linic bifurcation. The main feature of this
transition is that the time of collision of excitable
waves diverges logarithmically when approach-
ing the threshold. This can be easily checked in
experiments. Another important feature of An-
dronov homoclinic bifurcation is that it needs
just one parameter. This means that the
transition described here is robust enough to be
observed in biological systems.

A more qualitative formulation is presented
below. The bifurcation is characterized by a
logarithmic divergence of the period near the
threshold. Since in a homoclinic bifurcation, for
most of the time ¹, the system is near the saddle
point. A linear computation gives the following
result: ¹K!(1/j

`
) In D k D, where k is the con-

trolling parameter measuring the distance (here
k"a!a*) and j

`
is the positive eigenvalue of the

saddle point of the partial di!erential equation.
This is con"rmed numerically as illustrated in

Fig. 5. Moreover, "tting the curve ¹"f (a) gives
the unstable eigenvalue j

`
K0.217$0.005,

while the direct computation of the eigenvalues of
the stationary solution presented in Fig. 3 yields
j
`
K0.221$0.003. This nice agreement found

supports the validity of the geometrical approach
describing the transition in terms of a global
bifurcation.

The transition occurs near the onset of the
limit cycle for the local dynamics. This oscillating
behavior seems to be responsible for the
non-annihilation following a head-on collision,
since it gives the waves a kind of inertia. When
two pulses collide, the limit cycle helps to recon-
struct the nucleation solution.

As a general conclusion, we can say that
transition from waves annihilation, typical for
biological systems, to classical wave behavior
can be understood in terms of the Andronov



FIG. 5. Numerical proof of the Andronov bifurcation:
estimation of the time ¹ the #ow uses near the nucleation
solution vs. the parameter a. The part of the curve named
A (resp. B) corresponds to the estimated time of the period
when waves are crossing (resp. not crossing) (a) ¹ vs. a. It is
seen that a divergence occurs for a*K!4.3452]10~2.
(b) A semilogarithmic plot ¹ vs. !ln Da!a* D shows that
the type of divergence is logarithmic. Other parameters are
b"3.5, e"0.015 and d.1.25.
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homoclinic bifurcation (Andronov et al., 1971). It
is of codimension one, the transition is robust
and has been already observed in some physical,
chemical, and biological models (Argentina, 1999).
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