
Simulation of rainbows, coronas, and glories
by use of Mie theory
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Mie theory offers an exact solution to the problem of scattering of sunlight by spherical drops of water.
Until recently, most applications of Mie theory to scattering of light were restricted to a single wave-
length. Mie theory can now be used on modern personal computers to produce full-color simulations of
atmospheric optical effects, such as rainbows, coronas, and glories. Comparison of such simulations
with observations of natural glories and cloudbows is encouraging. © 2003 Optical Society of America
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1. Introduction

Scattering of sunlight by spherical drops of water
may seem to be a relatively simple process, but it
causes a surprising variety of complicated optical ef-
fects, such as primary and secondary rainbows, coro-
nas, and glories—some of which, even today, are not
fully understood. In the seventeenth century Des-
cartes and Newton used geometrical optics to explain
the formation of rainbows.1,2 In 1838 Airy3 ex-
tended the earlier theories by including the effects of
diffraction and interference, thus explaining the for-
mation of the rainbow’s supernumerary arcs that are
not predicted by geometrical optics.

In 1908 Gustav Mie4 provided a rigorous solution to
the problem of scattering of electromagnetic plane
waves by a homogeneous sphere. However, for
many years this theory seemed to have little practical
value because it was computationally demanding.
H. C. van de Hulst published a bibliography5 of Mie
results available in 1957. Such results were mainly
in the form of tables of computed values for small
drops with size parameter x � 30 �x � 2�r�� where
r is the drop radius and � is the wavelength of the
incident light�. H. C. van de Hulst also published6

some graphs of intensity versus scattering angle for 1
� x � 5. For scattering of light from water drops in
the atmosphere we are interested in much larger
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values of x, perhaps from x � 50 for fog droplets to x �
10,000 for rain during thunderstorms. Because Mie
theory becomes even more forbidding for large
spheres, significant effort has been spent on search-
ing for approximations to Mie theory.7–9 Eventu-
ally, the increasing power of computers and the
development of efficient computer algorithms10,11

permitted wider use of Mie theory,12–16 but such use
was generally restricted to scattering of light of a
single wavelength. However, it was not until the
late 1990s that Mie theory was, at last, used to sim-
ulate atmospheric optical effects in color.17–19

The research described here was initiated as a di-
rect result of Lee’s seminal paper17 in which he com-
pared simulations of rainbows using Mie theory and
Airy theory. With the potential of modern personal
computers with good-quality color displays, a com-
puter program for Mie scattering of light has been
developed. Based on the algorithm of Bohren and
Huffman,11 the MiePlot program can provide full-
color simulations of optical effects caused by spheri-
cal water drops, such as rainbows, coronas, and
glories. It can also produce a wide range of graphs of
scattered intensity for perpendicular and�or parallel
polarizations as functions of r, �, scattering angle �,
and refractive index n. This program, which
runs under Microsoft Windows, can be downloaded
at no charge from http:��www.philiplaven.com�
mieplot.htm.

An example of the graphical output of the MiePlot
program is given in Fig. 1, which demonstrates that
Mie scattering of monochromatic light is very depen-
dent on the size of the water drops. For light of
wavelength 0.65 	m, scattering from a spherical drop
with r � 1000 	m or r � 100 	m produces a primary
rainbow at approximately � � 138° and a secondary



rainbow at approximately � � 129°, together with
Alexander’s dark band between them. Other fea-
tures, such as the corona for � � 10° and the glory for
� � 170°, are visible on the curve for r � 10 	m. The
calculations of intensity as a function of � were made
at intervals of 0.1° for Fig. 1, but all other calculations
reported in this paper used an interval of 0.01°.

2. Simulation of Rainbows

Figure 2�a� shows Mie scattering of monochromatic
light from a drop with r � 100 	m for � between 137°
and 145°. Anyone familiar with Airy theory will
probably consider the high-frequency ripples to be
unnatural, but such ripples might be observable un-
der laboratory conditions of monochromatic light
scattered from a single drop. These ripples are
mainly the result of interference between rays that
have undergone one internal reflection �p � 2� and
rays that have undergone one external reflection �p �
0�.20,21 Airy theory does not predict such ripples on
the primary rainbow, because it ignores anything
other than p � 2 rays.

Atmospheric optical effects are caused not by a
single water drop but by millions of water drops of
nonuniform size. Figure 2�b� shows the result of av-
eraging the Mie intensities from 50 drops with a log-
normal size distribution with a median radius of 100
	m and a standard deviation of 0.1 	m �0.1% of the
median radius�. Although this size variation is ex-
tremely small, it has a dramatic effect: Comparison
of Figs. 2�a� and 2�b� shows that scattering from drops
of nonuniform size removes the high-frequency rip-
ples.

Natural atmospheric optical effects are caused by
the Sun or the Moon, which are circular light sources
with an apparent diameter of 
0.5°. Because Mie
theory assumes a plane wave, it is necessary to inte-
grate the intensities resulting from the Mie calcula-
tions over the diameter of the light source. Applying

this additional step to the curve shown in Fig. 2�a�
produces the monodisperse intensity curve shown in
Fig. 2�c�, where the high-frequency ripples have al-
most been removed.

Figure 2 is based on illumination by monochro-
matic light, whereas light from the Sun has a contin-
uous broad spectrum. To simulate the spectrum of
sunlight, the MiePlot program performs calculations
at N equally spaced wavelengths between 0.38 and
0.7 	m �where the value of N can be selected by the
user�. The relative intensity of each wavelength is
based on the measured solar spectral radiance shown
in Fig. 3 of Lee’s paper.17 Although it can be argued
that this spectral illuminant is not ideal because the
Sun’s elevation was 45°, it was adopted because it
facilitated comparisons with Lee’s results.

Figures 3�a� and 3�b� show the relative luminance
curves resulting from addition of Mie calculations for
N � 10 and N � 1000, respectively. These curves
are similar in shape, but the curve for N � 10 has a
complicated ripple structure, which is caused by the
fact that the high-frequency ripples for monochro-
matic light vary rapidly with changing wavelength.
When intensity curves for different wavelengths are
added together, the ripple structure will be reinforced
if the maxima and minima for the various wave-
lengths coincide; for example, the ripples shown in
Fig. 2�a� for � � 650 nm coincide approximately with
those for � � 650.9 nm, 651.8 nm, and so on. Figure
3�b� indicates that the ripple structure almost disap-
pears for N � 1000, but this value of N is very large
by normal colorimetric standards.

Figure 4 shows intensity curves plotted on a loga-
rithmic scale for primary and secondary rainbows for
r � 100 	m. This figure shows that the intensity for
perpendicular polarization is generally much greater
than for parallel polarization. An important excep-
tion occurs near the minima of the primary rainbow’s

Fig. 1. Graphs of intensity versus scattering angle �. Radius of spheres r � 1, 10, 100, and 1000 	m; wavelength of light � � 0.65 	m;
refractive index n � 1.332; unpolarized light.
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supernumeraries, which coincide with maxima of the
supernumeraries for parallel polarization.22

Figure 4 was calculated with N � 2000 to avoid any
problems with the ripple structure. For each value
of �, the intensity curve is the sum of the intensities
for each of the 2000 wavelengths. Color simulations
require the scattered intensities for each wavelength
to be converted into RGB �red, green, blue� values
used by computer displays. For each value of �, the
gamma-corrected sum of the resulting RGB values is
used to generate the three horizontal stripes above
the graph in Fig. 4, which represent the brightness
and the color of light at specific values of �: The top

stripe is for perpendicular polarization, the middle
stripe for parallel polarization, and the bottom stripe
for unpolarized light. Since rainbows are strongly
polarized, most of the middle stripe is very dark.

Figure 5 shows the results of an exercise to deter-
mine the minimum value of N for Mie simulations of
the primary and secondary rainbows for r � 100 	m.
Each horizontal stripe shows the results of calcula-
tions by use of a specific value of N. Figure 5�a�
demonstrates that simulations of the primary rain-
bow �i.e., between 137° � � � 145°� are fairly consis-
tent for 10 � N � 2000. Nevertheless, because
there are some subtle variations when N � 30, it is
suggested that N � 30 would be a safe choice for the
primary rainbow when r � 100 	m. The secondary
rainbow is shown in greater detail in Fig. 5�b�, which
indicates the need for even higher values of N �e.g.,
600� to avoid visible ripples on such simulations.
This discrepancy in the required value of N is due to
differences in the ripple structures: Successive
maxima of the ripples are separated by 
0.15° on the
primary rainbow, compared with 
0.6° on the sec-
ondary rainbow. The smoothing effect caused by the
0.5° diameter of the Sun effectively removes the 0.15°
ripples but has no effect on the 0.6° ripples. Conse-
quently, more wavelengths are needed to suppress
the visibility of the ripple structure on simulations of
the secondary rainbow.

Lee17 introduced a powerful technique to illustrate

Fig. 2. �a� Graph of intensity versus scattering angle �. r � 100
	m, � � 0.65 	m, n � 1.332, perpendicular polarization. �b� As in
�a� but intensity is the average intensity of scattering by 50 spheres
with different values of radius with a log-normal distribution with
a median radius of 100 	m and a standard deviation of 0.1 	m
�0.1% of the median radius�. �c� As in �a� but intensity is averaged
to take account of the 0.5° diameter of the Sun.

Fig. 3. �a� Graph of intensity versus scattering angle �. r � 100
	m, ten values of � equally spaced between 0.38 and 0.7 	m, n
varies as function of �, perpendicular polarization. �b� As in �a�
but with 1000 values of � equally spaced between 0.38 and 0.7 	m.
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how the appearance of rainbows varies with drop
size. The MiePlot program can also generate these
Lee diagrams, as shown in Fig. 6 where each colored
point represents the color of light scattered in a spe-
cific direction � by a drop of radius r. The brightness
of each vertical line of colors representing the rain-
bow caused by a drop of radius r has been normalized
by the maximum luminance for that value of r. Fig-
ure 6 is based on the assumption that the Sun is the
light source, which implies that the Mie calculations
have been smoothed to take account of the 0.5° ap-
parent diameter of the Sun.

Figure 6 can be compared with Fig. 15 of Lee’s

paper17: As Lee noted, the latter’s “only literally un-
natural feature seems to be the Mie map’s ripple
structure, which appears as a subtle color marbling
on the cloudbow primaries and their supernumerar-
ies” �Ref. 17, p. 1514�. Severe marbling is visible in
Fig. 6, which was calculated with N � 7 for all values
of r between 10 and 1000 	m, but Fig. 7 does not
exhibit such marbling. The value of N used in pro-
duction of Fig. 7 was a function of drop size: N �
600 for r � 10 	m drops, reducing to N � 30 for r �
200 	m drops or larger. Comparison of Figs. 6 and
7 demonstrates that marbling on such simulations
can be avoided by use of higher values of N. It seems

Fig. 5. �a� Simulation of primary and secondary rainbows caused by scattering of unpolarized sunlight from r � 100 	m water drops with
the specified number N of wavelengths. �b� As in �a� but limited to the secondary rainbow.

Fig. 4. Graph of intensity versus scattering angle � for r � 100 	m, together with colored stripes simulating primary and secondary
rainbows for perpendicular polarization, parallel polarization, and for unpolarized light �N � 2000�.
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that marbling is another manifestation of the ripples
discussed above. Because the ripples occur at dif-
ferent values of � for different values of r, they appear
on Lee diagrams as lighter �or darker� diagonal
stripes.

From the foregoing it is obvious that Mie theory
can be demanding in terms of the number of wave-
lengths required when it is used to simulate the scat-
tering of a continuous spectrum. It is important to
understand that this is not due to the spectral char-
acteristics of the incident light, such as sunlight.
Similar problems occur even with a flat spectrum.
The fundamental cause is that the high-frequency
ripples correctly predicted by Mie theory for mono-
chromatic light disappear when monochromatic light
is replaced with light that has a continuous spectrum.
Simulating this process of averaging requires Mie
calculations at many wavelengths.

As mentioned above, natural atmospheric effects
involve scattering from millions of drops of varying
sizes. Having calculated the data for many values of
r to produce a Lee diagram for monodisperse drops,
one can easily generate a Lee diagram for disperse
drops. Figure 8 shows the results for drops with a
log-normal size distribution with a standard devia-
tion of 20%. Comparison of Fig. 7 with Fig. 8 shows
that this variability in drop sizes suppresses the rain-
bow’s supernumeraries, especially for r � 100 	m.

Figures 9�a� and 9�b� show simulations of primary
and secondary rainbows caused by scattering of sun-
light from water drops of r � 200 	m and r � 500 	m,
respectively �as might be observed with a 35-mm film
camera with a lens of focal length 70 mm�. In na-
ture, Alexander’s dark band would be much lighter
than shown in Fig. 9, because these simulations ig-
nore other sources of light such as diffuse or multiple
scattering, skylight, and reflected light. Such mech-
anisms have been widely studied, but recent research
by Gedzelman and Lock is particularly relevant be-
cause it combines Mie theory with multiple scatter-
ing.19,23,24 Furthermore, Fig. 9 is based on the
unrealistic assumption of monodisperse raindrops:
Variations in drop size will inevitably reduce the vis-
ibility of the supernumerary arcs.

For scattering of sunlight from natural water
drops, it seems that the ripples calculated so exactly
by Mie theory must be smoothed away, thus giving
results similar to Airy theory. Consequently, it is
easy to understand why the Airy method is preferred
for simulation of rainbows. Lee’s paper concludes as
follows:

Thus, far from being an outdated irrelevancy, Airy
theory shows itself to be a simple, quantitatively
reliable model of the natural rainbow’s colors and
luminances. Provided that we restrict ourselves

Fig. 7. Lee diagram of the primary rainbow for values of r be-
tween 10 and 1000 	m for unpolarized sunlight �N � 6000�r for 10
	m � r � 200 	m and N � 30 for r � 200 	m�.

Fig. 6. Lee diagram of the primary rainbow for values of r be-
tween 10 and 1000 	m for unpolarized sunlight �N � 7�.
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to spectrally integrated luminances �or radiances�,
it can be used to predict accurately the visual ap-
pearance of most naturally occurring water-drop
bows and supernumeraries. Equally important,
we see that Mie theory for monodispersions should
not always be the model of first resort, as it pro-

duces details not seen in the natural rainbow and
does so with much more computational effort than
Airy theory. �Ref. 17. p. 1518�

3. Simulation of Coronas and Glories

Figure 10 shows MiePlot simulations of the corona
and the glory for r � 10 	m. In real life it is difficult
to observe the corona around the Sun, because the
glare of the Sun obscures the colored rings. Hence
the brightness of the simulated corona in Fig. 10 has
been increased by a factor of 20 so that the Sun and
its immediate surroundings are overexposed. The
corona and the glory have different sizes, but the
sequence of colors is almost identical. The key dif-
ferences are that, for r � 10 	m, the glory has a dark
ring around � � 179.3° and that, in general, the outer
rings of glories are relatively bright compared with
those of coronas.

Although similar in appearance, these two phe-
nomena are caused by completely different mecha-
nisms. The corona is the result of simple diffraction
and, thus, can be satisfactorily modeled by use of
Bessel functions. On the other hand, there are no
simple theories to explain the glory. Following the
pioneering research in 1947 of van de Hulst,25 the
modern consensus is that the glory is caused by a
combination of surface waves and rays that have un-
dergone many internal reflections.26–28

Figure 11 shows simulations of the glory caused by
scattering of unpolarized sunlight from a water drop
of r � 10 	m with the specified number of wave-
lengths. At least 600 wavelengths are needed to
achieve consistent results. Figure 11 indicates that
the inner red ring of the glory occurs at approxi-
mately � � 177.6°, with a second red ring at 176.3°
and much fainter red rings at 174.4° and 172.5°.

Figure 12 is a Lee diagram showing how the ap-
pearance of the glory varies with the radius r of the
water drop. The sequence of ring colors is essen-
tially independent of r. To a first approximation, the

Fig. 8. As in Fig. 7, except that drops of nominal radius r have a
log-normal size distribution with a standard deviation of 20% of
the nominal value.

Fig. 9. �a� Simulation of primary and secondary rainbows caused by scattering of unpolarized sunlight from r � 200 	m water drops. �b�
Simulation of primary and secondary rainbows caused by scattering of unpolarized sunlight from r � 500 	m water drops.
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radius of a given ring from the antisolar point �� �
180°� is inversely proportional to r; for example, the
four inner red rings have radii �measured in degrees�
of approximately 24�r, 37�r, 56�r, and 75�r �where r
is measured in 	m�.

The MiePlot program allows comparisons of simu-
lations with photographs of atmospheric optical ef-
fects. Figure 13 shows a digital image of a glory
observed from a commercial aircraft, together with a
superimposed MiePlot simulation of scattering of
sunlight by water drops with r � 4.8 	m. Apart
from adding a background color roughly matching
that of the original image, no other adjustments have
been made to the simulation. It should be noted
that the close agreement between the original image
and the simulation does not necessarily prove that
the simulation is accurate, because we have no inde-
pendent confirmation of the size of the water drops
causing the glory. Nevertheless, another simulation
for r � 4.7 	m produces rings that are larger than the
observed rings, whereas a simulation for r � 4.9 	m
produces rings that are smaller. Subject to the ac-
curacy of the camera’s calibration, we can be moder-
ately confident that water drops of 
4.8 	m were
responsible for this particular glory.

Figure 14 shows a digital image of a faint glory
surrounded by a portion of a cloudbow, in which there
is a dark ring around � � 144° and an almost-white
ring around � � 141°. Figure 15 is a MiePlot simu-

lation of the same image based on scattering of sun-
light by water drops with r � 20 	m, plus a uniform
background color. The details provided by the sim-
ulation are much clearer than in the original image,
but it is reasonable to assume that water drops with
r � 20 	m were dominant in the observed clouds.

4. Sources of Error

Although Mie theory is rigorous, various assump-
tions made within the MiePlot program can affect the
validity of simulations of atmospheric optical effects.
One assumption mentioned above concerns the spec-
tral radiance of sunlight: Different models of spec-

Fig. 10. Simulation of corona �top� and glory �bottom� caused by
scattering of unpolarized sunlight from r � 10 	m water drops.

Fig. 11. Simulation of the glory caused by scattering of unpolarized sunlight from r � 10 	m water drops with the specified number of
wavelengths equally spaced between 0.38 and 0.7 	m.

Fig. 12. Lee diagram of the glory caused by scattering of unpo-
larized sunlight from water drops of nominal radius r with a log-
normal size distribution and a standard deviation of 5% of the
nominal value.
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tral radiance would obviously affect the color balance
of simulations.

It is also necessary to define the refractive index
n of water as a function of wavelength �. There are
surprisingly wide variations in the value of n
quoted by various sources.29–33 For example, the
quoted values of n for � � 400 nm vary between
1.3427 and 1.3498, corresponding to primary rain-
bow angles of 139.3° and 140.3°. Because most
atmospheric effects are dependent on the absolute
and relative values of n as a function of �, such
differences are, to say the least, disconcerting.
The MiePlot program now allows the user to select
one of several equations for n as a function of �, but
the default equation is that defined by the Interna-
tional Association for the Properties of Water and
Steam.33

Even if the Mie simulations could be made math-
ematically precise, there is a substantial problem
with colorimetry. First, it is necessary to define
the colors corresponding to specific wavelengths of
light in terms of RGB values used within the com-

puter.34 The MiePlot program uses the simple al-
gorithm devised by Bruton.35 Second, full-color
simulations depend very much on the characteristics
of the display devices, such as computer screens,
projectors, or printers. In practice, differences in
the inherent characteristics of computer displays
�e.g., primary colors and gamma� are compounded
by user settings, such as brightness, contrast, and
color balance. Consequently, simulations in color
can look dramatically different on different equip-
ment. Further research is needed to address both
these issues.

5. Conclusions

Mie theory provides a rigorous solution to the prob-
lem of scattering of sunlight from spherical rain-
drops, but it involves heavy computation. Simpler
theories, such as Airy theory for rainbows or Bessel
functions for coronas, can give almost identical re-
sults with much less computation. In some respects,
using Mie theory can be equivalent to using a sledge-
hammer to crack a nut. Nevertheless, Mie theory
remains the benchmark against which other theories
are judged, and it is an invaluable tool for simulation
of glories.

Advances in computer power mean that Mie the-
ory can be used to produce full-color simulations
of atmospheric optical effects. This paper has
described the MiePlot computer program, which
is freely available from the author. On a modern
personal computer this program can produce simu-
lations of glories and fogbows within a few minutes,
whereas detailed simulations of rainbows might
take 1 h or so.

Calculations with Mie theory can be erroneous if
the scattering of a continuous spectrum is modeled by
a small number of discrete wavelengths. For exam-
ple, Mie calculations require 
600 wavelengths for
simulation of the glory for r � 10 	m or 30 wave-
lengths for simulation of the primary rainbow for r �
100 	m.

Fig. 13. Digital image of a glory with a superimposed simulation
of scattering of unpolarized sunlight from r � 4.8 	m water drops.

Fig. 14. Digital image of a faint glory and a cloudbow.
Fig. 15. Simulation of scattering of unpolarized sunlight from r �
20 	m water drops.
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Other sources of errors include

• uncertainty about the values of refractive index
n as a function of wavelength �;

• colorimetry issues associated with display de-
vices;

• relative intensity of the solar radiance as a
function of �;

• the effects of indirect illumination, such as mul-
tiple scattering, have been ignored.

Despite these potential sources of error, comparison
of MiePlot simulations with digital images of natural
glories is encouraging.

The author expresses his gratitude to Raymond
Lee Jr. for his stimulating paper17 and for his per-
sonal encouragement. Les Cowley provided invalu-
able suggestions and feedback during the writing and
testing of the MiePlot program.
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