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SELF-DESCRIBING DATA 

You just spent three CPU hours running a simula- 
tion to forecast your company’s financial future, and 
your boss asks you to interpret the output: 

Scenario 1: 3.2% -12.0% 1.1% 

Scenario 2: 12.7% 0.0% 8.6% 

Scenario 3: 1.6% -8.3% 9.2% 

Hmmm. 
You dig through the program to find the meaning 

of each output variable. Good news-Scenario 2 
paints a rosy picture for the next fiscal year. Now all 
you have to do is uncover the assumptions of each. 
Oops-the disaster in Scenario 1 is your company’s 
current strategy, doomed to failure. What did Sce- 
nario 2 do that was so effective? Back to the pro- 
gram, trying to discover which input files each one 
reads. . . . 

Every programmer knows the frustration of trying 
to decipher mysterious data. The first two sections of 
this column discuss two techniques for embedding 
descriptions in data files. The third section then 
applies both methods to a concrete problem. 

Name-Value Pairs 
Many document production systems support biblio- 
graphic references in a form something like: 

Xtitle The Art of Computer Programming, 
Volume 3: Sorting and Searching 

Xauthor D. E. Knuth 
%pub Addison-Wesley 
%city Reading, Mass. 
%year 1973 

Xauthor A. V. Aho 
%author M. J. Corasick 

0 1967 ACM OOOl-0782/87/0600-0479 75a 

%title 

%journal 
Xvolume 
%number 
%month 
%year 
%pages 

Efficient string matching: 
an aid to bibliographic search 
Communications of the ACM 
18 

6 

June 
1975 

333-340 

Blank lines separate entries in the file. A line that 
begins with a percent sign contains an identifying 
term followed by arbitrary text. Text may be con- 
tinued on subsequent lines that do not start with 
a percent sign. 

The lines in the bibliography file are name-value 
pairs: each line contains the name of an attribute 
followed by its value. The names and the values are 
sufficiently self-describing that I don’t need to elabo- 
rate further on them. This format is particularly well 
suited to bibliographies and other complex data 
models. It supports missing attributes (books have no 
volume number and journals have no city), multiple 
attributes (such as authors), and an arbitrary order of 
fields (one need not remember whether the volume 
number comes before or after the month). 

Name-value pairs are useful in many databases. 
One might, for instance, describe the aircraft carrier 
USS Nimitz in a database of naval vessels with these 
pairs: 

name Nimitz 
class CVN 
number 68 

displacement 81600 

length 1040 

beam 134 

draft 36.5 

flightdeck 252 

speed 30 

officers 447 

enlisted 5176 
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Such a record could be used for input, storage, and 
output. A user could prepare a record for entry into 
the database using a standard text editor. The data- 
base system could store records in exadtly this form 
(we’ll soon see a representation that is more space 
efficient). The same record could be included in the 
answer to the query “What ships have a displace- 
ment of more than 75,000 tons?” 

Name-value pairs offer several advantages for this 
hypothetical application. A single format can be 
used for reading, storing, and writing records; this 
simplifies life for user and implementer alike. The 
application is inherently variable-format because 
different ships have different attributes: submarines 
have no flight decks and aircraft carriers have no 
submerged depth. Unfortunately, the example does 
not document the units in which the various quanti- 
ties are expressed; we’ll return to that shortly. 

Some database systems store records on mass 
memory in exactly the form shown above. This for- 
mat makes it particularly easy to add new fields to 
records in an existing database. The name-value for- 
mat can be quite space efficient, especially com- 
pared to fixed-format records that have many fields, 
most of which are usually empty. If storage is criti- 
cal, however, then the database could be squeezed 
to a compressed format: 

Each field begins with a two-character name and 
ends with a vertical bar. The input and the stored 
formats are connected by a data dictionary, which 
might start: 

ABBR NAME UNITS 
na name text 
cl class text 
nu number text 
di displacement tons 
le length feet 
be beam feet 
dr draft feet 
fl flightdeck feet 

sP speed knots 
of officers personnel 
en enlisted personnel 

format. The regular structure supports the tabular 
format, but observe that the header line is another 
kind of self-description embedded in the data. 

Name-value pairs are a handy way to give input 
to any program. (They are perhaps the tiniest of the 
“little languages” described in the September 1986 
column.) They can help meet the criteria that 
Kernighan and Plauger propose in Chapter 5 of their 
Elements of Progrumming Style (2nd ed., McGraw-Hill, 
1978): 

Use mnemonic input and output. Make input easy to 
prepare (and to prepare correctly). Echo the input and 
any defaults onto the output; make the outpui self- 
explanatory. 

Name-value pairs are useful in code far removed 
from input/output. Suppose we wanted to provide a 
subroutine that adds a ship to a database. Most lan- 
guages denote the (formal) name of a parameter by 
its position in the parameter list. This mechanism 
leads to remarkably clumsy calls: 

addship("Nimitz", "CVN", "68", 
81600, 1040, 134, 36.5, 

447, 5176,,,30,,,252,,,,) 

The missing parameters denote fields not present in 
this record. Is 30 the speed in knots or the draft in 
feet? A little discipline in commenting helps unravel 
the mess: 

addshipc "Nimitz", # name 
" CVN" , # class 
"68" , # number 
81600, # disp 
1040, # length 

. . . 1 

Many programming languages support named 
parameters, which make the job easier: 

addshipcname = "Nimitz", 
class = "CVN", 
number = "68", 
disp = 81600, 

length = 1040, 
. . . 1 

In this dictionary the abbreviations are always the 
first two characters of the name; that may not hold 
in general. Readers offended by hypocrisy may com- 
plain that the above data is not in a name-value 

Even if your language doesn’t have named param- 
eters, you can usually simulate them with a few 
routines: 
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shipstart 
ship&r (name, "Nimitz") 
shipstr (class, "CVN" ) 
shipstr (number, "68" ) 
shipnum(disp, 81600) 

shipnum(length, 1040) 

. . . 
shipendc ) 

The name variables name, class, number, etc., are 
assigned unique integers. 

Provenances in Programming 
The provenance of a museum piece lists the origin 
or source of the object. Antiques are worth more 
when they have a provenance (this chair was built 
in such-and-such, then purchased by so-and-so, 
etc.). You might think of a provenance as a pedigree 
for a nonliving object. 

The idea of a provenance is old hat to many pro- 
grammers. Some software shops insist that the 
provenance of a program be kept in the source code 
itself: in addition to other documentation in a mod- 
ule, the provenance gives the history of the code 
(who changed what when, and why). The prove- 
nance of a data file is often kept in an associated file 
(a transaction log, for instance). Frank Starmer, a 
Professor in the Departments of Computer Science 
and Medicine at Duke University, tells how his pro- 
grams produce data files that contain their own 
provenances: 

“We constantly face the problem of keeping track 
of our manipulations of data. We typically explore 
data sets by setting up a UNIX@ pipeline like 

sim.events -k 1.5 -1 3 I 
sample -t .Ol I 
bins 

The first program is a simulation with the two pa- 
rameters k and 1 (set in this example to 1.5 and 3)’ 
The vertical bar at the end of the first line pipes the 
output into the second program. That program sam- 
ples the data at the designated frequency, and in 
turn pipes its output to the third program, which 
chops the input into bins (suitable for graphical 
display as a histogram). 

UNIX is a registered trademark of AT&T Bell Laboratories. 

’ Note that the two parameters are set by a simple name-value mechanism 
-/. B. 

“When looking at the result of a computation like 
this, it is helpful to have an ‘audit trail’ of the vari- 
ous command lines and data files encountered. We 
therefore built a mechanism for ‘commenting’ the 
files with various annotations so that when we re- 
view the output, everything is there on one display 
or piece of paper. 

“We use several types of comments. An ‘audit 
trail’ line identifies a data file or a command-line 
transformation. A ‘dictionary’ line names the attri- 
butes in each column of the output. A ‘frame separa- 
tor’ sets apart a group of sequential records associ- 
ated with a common event. A ‘note’ allows us to 
place our remarks in the file. All comments begin 
with an exclamation mark and the type of the com- 
ment; other lines are passed through untouched and 
processed as data. Thus the output of the above 
pipeline might look like: 

ltrail sim.events -k 1.5 -1 3 
ltrail sample -t .Ol 
ltrail bins -t .Ol 

Idict bin-bottom-value item-count 
0.00 72 

0.01 138 

0.02 121 

. . . 

lnote there is a cluster around 0.75 
lframe 

All programs in our library automatically copy exist- 
ing comments from their input onto their output, 
and additionally add a new t r a i 1 comment to doc- 
ument their own action. Programs that reformat data 
(such as bins) add a diet comment to describe the 
new format. 

“We’ve done this in order to survive. This disci- 
pline aids in making both input and output data files 
self-documenting. Many other people have built 
similar mechanisms; wherever possible, I have cop- 
ied their enhancements rather than having to figure 
out new ones myself.” 

Tom Duff of Bell Labs uses a similar strategy in a 
system for processing pictures. He has developed a 
large suite of UNIX programs that perform transfor- 
mations on pictures. A picture file consists of text 
lines listing the commands that made the picture 
(terminated by a blank line) followed by the picture 
itself (represented in binary). The prelude provides a 
provenance of the picture. Before Duff started this 
practice he would sometimes find himself with a 
wonderful picture and no idea of what transforma- 
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tions produced it; now he can reconstruct any 
picture from its provenance. 

Duff implements the provenances in a single 
library routine that all programs call as they begin 
execution. The routine copies the old command 
lines to the output and then writes the command 
line of the current program. 

A Sorting Lab 
To make the above ideas more concrete, we’ll apply 
them to a problem described in the July 1985 col- 
umn: building “scaffolding” to experiment with sort 
routines. That column contains code for several sort 
routines and a few small programs to exercise them. 
This section will sketch a better interface to the rou- 
tines. The input and output are both expressed in 
name-value pairs, and the output contains a com- 
plete description of the input (its provenance). 

Experiments on sorting algorithms involve adjust- 
ing various parameters, executing the specified rou- 
tine, then reporting key attributes of the computa- 
tion. The precise operations to be performed can be 
specified by a sequence of name-value pairs. Thus 
the input file to the sorting lab might look like this: 

n 100000 

input identical 

alg quick 
cutoff 10 

partition random 
seed 379 

In this example the problem size, n, is set to 100,000. 
The input array is initialized with identical 
elements (other options might include random, 
sorted,or reversed elements). The sortingalgo- 
rithm in this experiment is quit k for quicksort; 
insert (for insertionsort) and heap (forheapsort) 
might also be available. The cutoff and parti - 
t ion names specify further parameters in quit k - 
sort. 

The input to the simulation program is a sequence 
of experiments in the above format, separated by 
blank. lines. Its output is in exactly the same format 
of name-value pairs, separated by blank lines. The 
first part of an output record contains the original 
input description, which gives the provenance of 
each experiment. The input is followed by three ad- 
ditional attributes: camps records the number of 
comparisons made, swaps counts swaps, and cpu 
records the run time of the procedure. Thus an out- 
put record might end with the fields: 

camps 4772 
swaps 4676 

cpu 0.1083 

Given the sort routines and other procedures to do 
the real work, the control program is easy to build. 
Its main loop is sketched in Program 1: the code 
reads each input line, copies it to the output, and 
processes the name-value pair. The s imul.ate ( ) 
routine performs the experiment and writes the out- 
put variables in name-value format; it is called at 
each blank line and also at the end of the file. 

loop 
read input line into string S 
if end of file then break 
if S = *I II then simulated) 
write S on output 
Fl = first field in S 
F2 = second field in S 
if Fl= "n" then 

N = F2 
else if Fl = "alg" then 

if F2 = "insert" then 
alg = 1 

else if F2 = "heap" then 
alg = 2 

else if F2 = "quick" then 
alg = 3 

else error("bad alg") 
else if Fl = "input" then 

. . . 
simulatet 1 

PROGRAM 1. A Loop to Process Name-Value Pairs 

This structure is useful for many simulation pro- 
grams. The program is easy to build and easy to use. 
Its output can be read by a human and can also be 
fed to later programs for statistical analysis. Because 
all the input variables (which together provide a 
provenance of the experiment) appear with the out- 
put variables, any particular experiment can be re- 
peated and studied in detail. The variable format 
allows additional input and output parameters to 
be added to future simulations without having to 
restructure previous data. Problem 8 shows how the 
basic structure can be gracefully extended to per- 
forming sets of experiments. 
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Principles 
This column has only scratched the surface of self- 
describing data. Many systems, for instance, allow a 
programmer to multiply two numeric objects of un- 
specified type (ranging from integers to arrays of 
complex numbers); at run time the system deter- 
mines the types by inspecting descriptions stored 
with the operands, and then performs the appropri- 
ate action. Some tagged-architecture machines pro- 
vide hardware support of self-describing objects, and 
some communications protocols store data along 
with a description of its format and types. It is easy 
to give even more exotic examples of self-describing 
data. 

This column has concentrated on two simple but 
useful kinds of self-descriptions. Each reflects an im- 
portant principle of program documentation. 

l The most important aid to documentation is a 
clean programming language. Name-value pairs 
are a simple, elegant, and widely useful linguistic 
mechanism. 

l The best place for program documentation is in 
the source file itself. A data file is a fine place to 
store its own provenance: it is easy to manipulate 
and hard to lose. 

Problems 
Self-documenting programs contain useful com- 
ments and suggestive indentation. Experiment 
with formatting a data file to make it easier to 
read. If necessary, modify the programs that 
process the file to ignore white space and com- 
ments. Start your task using a text editor. If the 
resulting formatted records are indeed easier to 
read, try writing a “pretty printing” program to 
present an arbitrary record in the format. 

Give an example of a data file that contains a 
program to process itself. 

The comments in good programs make them 
self-describing. The ultimate in a self-describing 
program, though, is one that prints exactly its 
source code when executed. Is it possible to 
write such a program in your favorite language? 

Many files are implicitly self-describing: 
although the operating system has no idea what 
they contain, a human reader can tell at a glance 
whether a file contains program source text, 
English text, numeric data, or binary data. How 
would you write a program to make an en- 
lightened guess as to the type of such a file? 

Programming Pearls 

Give examples of name-value pairs in your com- 
puting environment. 

Find a program with fixed-format input that you 
find hard to use, and modify it to read name- 
value pairs. Is it easier to modify the program 
directly or to write a new program that sits in 
front of the existing program? 

A general principle states that the output of a 
program should be suitable for input to the pro- 
gram. For instance, if a program wants a date to 
be entered in the format “06/31/87" then it 
should not write: 

Enter date (default 31 June 1987): 

Give other contexts in which this rule holds. 

The text sketched how to specify a single experi- 
ment on a sorting algorithm. Usually, though, 
experiments come in sets, with several param- 
eters systematically varied. Construct a genera- 
tor program that will convert a description like 

n Cl00 300 1000 3000 100001 

input [random identical sorted] 

al9 quicksort 
cutoff 15 10 20 401 

partition med-of-3 

into 5 x 3 x 4 = 60 different specifications, with 
each item in a bracket list represented by a sin- 
gle element in a cross product. How would you 
add more complex iterators to the language, 
such as 
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