
by]an Bentley

programming
pearls

SELF-DESCRIBING DATA

You just spent three CPU hours running a simula-
tion to forecast your company’s financial future, and
your boss asks you to interpret the output:

Scenario 1: 3.2% -12.0% 1.1%

Scenario 2: 12.7% 0.0% 8.6%

Scenario 3: 1.6% -8.3% 9.2%

Hmmm.
You dig through the program to find the meaning

of each output variable. Good news-Scenario 2
paints a rosy picture for the next fiscal year. Now all
you have to do is uncover the assumptions of each.
Oops-the disaster in Scenario 1 is your company’s
current strategy, doomed to failure. What did Sce-
nario 2 do that was so effective? Back to the pro-
gram, trying to discover which input files each one
reads. . . .

Every programmer knows the frustration of trying
to decipher mysterious data. The first two sections of
this column discuss two techniques for embedding
descriptions in data files. The third section then
applies both methods to a concrete problem.

Name-Value Pairs
Many document production systems support biblio-
graphic references in a form something like:

Xtitle The Art of Computer Programming,
Volume 3: Sorting and Searching

Xauthor D. E. Knuth
%pub Addison-Wesley
%city Reading, Mass.
%year 1973

Xauthor A. V. Aho
%author M. J. Corasick

0 1967 ACM OOOl-0782/87/0600-0479 75a

%title

%journal
Xvolume
%number
%month
%year
%pages

Efficient string matching:
an aid to bibliographic search
Communications of the ACM
18

6

June
1975

333-340

Blank lines separate entries in the file. A line that
begins with a percent sign contains an identifying
term followed by arbitrary text. Text may be con-
tinued on subsequent lines that do not start with
a percent sign.

The lines in the bibliography file are name-value
pairs: each line contains the name of an attribute
followed by its value. The names and the values are
sufficiently self-describing that I don’t need to elabo-
rate further on them. This format is particularly well
suited to bibliographies and other complex data
models. It supports missing attributes (books have no
volume number and journals have no city), multiple
attributes (such as authors), and an arbitrary order of
fields (one need not remember whether the volume
number comes before or after the month).

Name-value pairs are useful in many databases.
One might, for instance, describe the aircraft carrier
USS Nimitz in a database of naval vessels with these
pairs:

name Nimitz
class CVN
number 68

displacement 81600

length 1040

beam 134

draft 36.5

flightdeck 252

speed 30

officers 447

enlisted 5176

June 1987 Volume 30 Number 6 Communications of the ACM 479

Programming Pearls

Such a record could be used for input, storage, and
output. A user could prepare a record for entry into
the database using a standard text editor. The data-
base system could store records in exadtly this form
(we’ll soon see a representation that is more space
efficient). The same record could be included in the
answer to the query “What ships have a displace-
ment of more than 75,000 tons?”

Name-value pairs offer several advantages for this
hypothetical application. A single format can be
used for reading, storing, and writing records; this
simplifies life for user and implementer alike. The
application is inherently variable-format because
different ships have different attributes: submarines
have no flight decks and aircraft carriers have no
submerged depth. Unfortunately, the example does
not document the units in which the various quanti-
ties are expressed; we’ll return to that shortly.

Some database systems store records on mass
memory in exactly the form shown above. This for-
mat makes it particularly easy to add new fields to
records in an existing database. The name-value for-
mat can be quite space efficient, especially com-
pared to fixed-format records that have many fields,
most of which are usually empty. If storage is criti-
cal, however, then the database could be squeezed
to a compressed format:

Each field begins with a two-character name and
ends with a vertical bar. The input and the stored
formats are connected by a data dictionary, which
might start:

ABBR NAME UNITS
na name text
cl class text
nu number text
di displacement tons
le length feet
be beam feet
dr draft feet
fl flightdeck feet

sP speed knots
of officers personnel
en enlisted personnel

format. The regular structure supports the tabular
format, but observe that the header line is another
kind of self-description embedded in the data.

Name-value pairs are a handy way to give input
to any program. (They are perhaps the tiniest of the
“little languages” described in the September 1986
column.) They can help meet the criteria that
Kernighan and Plauger propose in Chapter 5 of their
Elements of Progrumming Style (2nd ed., McGraw-Hill,
1978):

Use mnemonic input and output. Make input easy to
prepare (and to prepare correctly). Echo the input and
any defaults onto the output; make the outpui self-
explanatory.

Name-value pairs are useful in code far removed
from input/output. Suppose we wanted to provide a
subroutine that adds a ship to a database. Most lan-
guages denote the (formal) name of a parameter by
its position in the parameter list. This mechanism
leads to remarkably clumsy calls:

addship("Nimitz", "CVN", "68",
81600, 1040, 134, 36.5,

447, 5176,,,30,,,252,,,,)

The missing parameters denote fields not present in
this record. Is 30 the speed in knots or the draft in
feet? A little discipline in commenting helps unravel
the mess:

addshipc "Nimitz", # name
" CVN" , # class
"68" , # number
81600, # disp
1040, # length

. . . 1

Many programming languages support named
parameters, which make the job easier:

addshipcname = "Nimitz",
class = "CVN",
number = "68",
disp = 81600,

length = 1040,
. . . 1

In this dictionary the abbreviations are always the
first two characters of the name; that may not hold
in general. Readers offended by hypocrisy may com-
plain that the above data is not in a name-value

Even if your language doesn’t have named param-
eters, you can usually simulate them with a few
routines:

480 Communications of the ACM lune 1987 Volume 30 Number 6

Programming Pearls

shipstart
ship&r (name, "Nimitz")
shipstr (class, "CVN")
shipstr (number, "68")
shipnum(disp, 81600)

shipnum(length, 1040)

. . .
shipendc)

The name variables name, class, number, etc., are
assigned unique integers.

Provenances in Programming
The provenance of a museum piece lists the origin
or source of the object. Antiques are worth more
when they have a provenance (this chair was built
in such-and-such, then purchased by so-and-so,
etc.). You might think of a provenance as a pedigree
for a nonliving object.

The idea of a provenance is old hat to many pro-
grammers. Some software shops insist that the
provenance of a program be kept in the source code
itself: in addition to other documentation in a mod-
ule, the provenance gives the history of the code
(who changed what when, and why). The prove-
nance of a data file is often kept in an associated file
(a transaction log, for instance). Frank Starmer, a
Professor in the Departments of Computer Science
and Medicine at Duke University, tells how his pro-
grams produce data files that contain their own
provenances:

“We constantly face the problem of keeping track
of our manipulations of data. We typically explore
data sets by setting up a UNIX@ pipeline like

sim.events -k 1.5 -1 3 I
sample -t .Ol I
bins

The first program is a simulation with the two pa-
rameters k and 1 (set in this example to 1.5 and 3)’
The vertical bar at the end of the first line pipes the
output into the second program. That program sam-
ples the data at the designated frequency, and in
turn pipes its output to the third program, which
chops the input into bins (suitable for graphical
display as a histogram).

UNIX is a registered trademark of AT&T Bell Laboratories.

’ Note that the two parameters are set by a simple name-value mechanism
-/. B.

“When looking at the result of a computation like
this, it is helpful to have an ‘audit trail’ of the vari-
ous command lines and data files encountered. We
therefore built a mechanism for ‘commenting’ the
files with various annotations so that when we re-
view the output, everything is there on one display
or piece of paper.

“We use several types of comments. An ‘audit
trail’ line identifies a data file or a command-line
transformation. A ‘dictionary’ line names the attri-
butes in each column of the output. A ‘frame separa-
tor’ sets apart a group of sequential records associ-
ated with a common event. A ‘note’ allows us to
place our remarks in the file. All comments begin
with an exclamation mark and the type of the com-
ment; other lines are passed through untouched and
processed as data. Thus the output of the above
pipeline might look like:

ltrail sim.events -k 1.5 -1 3
ltrail sample -t .Ol
ltrail bins -t .Ol

Idict bin-bottom-value item-count
0.00 72

0.01 138

0.02 121

. . .

lnote there is a cluster around 0.75
lframe

All programs in our library automatically copy exist-
ing comments from their input onto their output,
and additionally add a new t r a i 1 comment to doc-
ument their own action. Programs that reformat data
(such as bins) add a diet comment to describe the
new format.

“We’ve done this in order to survive. This disci-
pline aids in making both input and output data files
self-documenting. Many other people have built
similar mechanisms; wherever possible, I have cop-
ied their enhancements rather than having to figure
out new ones myself.”

Tom Duff of Bell Labs uses a similar strategy in a
system for processing pictures. He has developed a
large suite of UNIX programs that perform transfor-
mations on pictures. A picture file consists of text
lines listing the commands that made the picture
(terminated by a blank line) followed by the picture
itself (represented in binary). The prelude provides a
provenance of the picture. Before Duff started this
practice he would sometimes find himself with a
wonderful picture and no idea of what transforma-

]une 1987 Volume 30 Number 6 Communications of the ACM 481

Programming Pearls

tions produced it; now he can reconstruct any
picture from its provenance.

Duff implements the provenances in a single
library routine that all programs call as they begin
execution. The routine copies the old command
lines to the output and then writes the command
line of the current program.

A Sorting Lab
To make the above ideas more concrete, we’ll apply
them to a problem described in the July 1985 col-
umn: building “scaffolding” to experiment with sort
routines. That column contains code for several sort
routines and a few small programs to exercise them.
This section will sketch a better interface to the rou-
tines. The input and output are both expressed in
name-value pairs, and the output contains a com-
plete description of the input (its provenance).

Experiments on sorting algorithms involve adjust-
ing various parameters, executing the specified rou-
tine, then reporting key attributes of the computa-
tion. The precise operations to be performed can be
specified by a sequence of name-value pairs. Thus
the input file to the sorting lab might look like this:

n 100000

input identical

alg quick
cutoff 10

partition random
seed 379

In this example the problem size, n, is set to 100,000.
The input array is initialized with identical
elements (other options might include random,
sorted,or reversed elements). The sortingalgo-
rithm in this experiment is quit k for quicksort;
insert (for insertionsort) and heap (forheapsort)
might also be available. The cutoff and parti -
t ion names specify further parameters in quit k -
sort.

The input to the simulation program is a sequence
of experiments in the above format, separated by
blank. lines. Its output is in exactly the same format
of name-value pairs, separated by blank lines. The
first part of an output record contains the original
input description, which gives the provenance of
each experiment. The input is followed by three ad-
ditional attributes: camps records the number of
comparisons made, swaps counts swaps, and cpu
records the run time of the procedure. Thus an out-
put record might end with the fields:

camps 4772
swaps 4676

cpu 0.1083

Given the sort routines and other procedures to do
the real work, the control program is easy to build.
Its main loop is sketched in Program 1: the code
reads each input line, copies it to the output, and
processes the name-value pair. The s imul.ate ()
routine performs the experiment and writes the out-
put variables in name-value format; it is called at
each blank line and also at the end of the file.

loop
read input line into string S
if end of file then break
if S = *I II then simulated)
write S on output
Fl = first field in S
F2 = second field in S
if Fl= "n" then

N = F2
else if Fl = "alg" then

if F2 = "insert" then
alg = 1

else if F2 = "heap" then
alg = 2

else if F2 = "quick" then
alg = 3

else error("bad alg")
else if Fl = "input" then

. . .
simulatet 1

PROGRAM 1. A Loop to Process Name-Value Pairs

This structure is useful for many simulation pro-
grams. The program is easy to build and easy to use.
Its output can be read by a human and can also be
fed to later programs for statistical analysis. Because
all the input variables (which together provide a
provenance of the experiment) appear with the out-
put variables, any particular experiment can be re-
peated and studied in detail. The variable format
allows additional input and output parameters to
be added to future simulations without having to
restructure previous data. Problem 8 shows how the
basic structure can be gracefully extended to per-
forming sets of experiments.

482 Communications of the ACM June 1987 Volume 30 Number 6

Principles
This column has only scratched the surface of self-
describing data. Many systems, for instance, allow a
programmer to multiply two numeric objects of un-
specified type (ranging from integers to arrays of
complex numbers); at run time the system deter-
mines the types by inspecting descriptions stored
with the operands, and then performs the appropri-
ate action. Some tagged-architecture machines pro-
vide hardware support of self-describing objects, and
some communications protocols store data along
with a description of its format and types. It is easy
to give even more exotic examples of self-describing
data.

This column has concentrated on two simple but
useful kinds of self-descriptions. Each reflects an im-
portant principle of program documentation.

l The most important aid to documentation is a
clean programming language. Name-value pairs
are a simple, elegant, and widely useful linguistic
mechanism.

l The best place for program documentation is in
the source file itself. A data file is a fine place to
store its own provenance: it is easy to manipulate
and hard to lose.

Problems
Self-documenting programs contain useful com-
ments and suggestive indentation. Experiment
with formatting a data file to make it easier to
read. If necessary, modify the programs that
process the file to ignore white space and com-
ments. Start your task using a text editor. If the
resulting formatted records are indeed easier to
read, try writing a “pretty printing” program to
present an arbitrary record in the format.

Give an example of a data file that contains a
program to process itself.

The comments in good programs make them
self-describing. The ultimate in a self-describing
program, though, is one that prints exactly its
source code when executed. Is it possible to
write such a program in your favorite language?

Many files are implicitly self-describing:
although the operating system has no idea what
they contain, a human reader can tell at a glance
whether a file contains program source text,
English text, numeric data, or binary data. How
would you write a program to make an en-
lightened guess as to the type of such a file?

Programming Pearls

Give examples of name-value pairs in your com-
puting environment.

Find a program with fixed-format input that you
find hard to use, and modify it to read name-
value pairs. Is it easier to modify the program
directly or to write a new program that sits in
front of the existing program?

A general principle states that the output of a
program should be suitable for input to the pro-
gram. For instance, if a program wants a date to
be entered in the format “06/31/87" then it
should not write:

Enter date (default 31 June 1987):

Give other contexts in which this rule holds.

The text sketched how to specify a single experi-
ment on a sorting algorithm. Usually, though,
experiments come in sets, with several param-
eters systematically varied. Construct a genera-
tor program that will convert a description like

n Cl00 300 1000 3000 100001

input [random identical sorted]

al9 quicksort
cutoff 15 10 20 401

partition med-of-3

into 5 x 3 x 4 = 60 different specifications, with
each item in a bracket list represented by a sin-
gle element in a cross product. How would you
add more complex iterators to the language,
such as

[from 10 to 130 by 201

For Correspondence: Jon Bentley, AT&T Bell Laboratories, Room X-317,
600 Mountain Avenue, Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

June 1987 Volume 30 Number 6 Communications of the ACM 483

