
Main Ideas

Grammars can give us insight about the underlying
structure of a surprisingly large range of natural
phenomena.

Grammars can be used to help categorize problems
and give you an idea of how difficult it is to solve with a
computer.

Grammars can be used to define the limitations of an
algorithm.

– p. 1/26

Brief Overview of Grammars

Noam Chomsky - 1956 Three models for the description of
language and 1959 On certain formal properties of
grammars

Attempted to find the underlying structure in languages.

Abstracted the concept of a grammar to rules that can
generate phrases.
For example: The frog

PHRASE → ARTICLE NOUN

ARTICLE → {a, an, the, . . . , etc.}

NOUN → {frog, chair, . . . , etc.}

– p. 2/26

Chomsky Hierarchy

Grammars:

Regular: Not very expressive, but easy for a computer to
handle. For example: The frog.

Regular

Context−Free

Context−Sensitive

Unrestricted

– p. 3/26

Chomsky Hierarchy

Context-Free: Can express everything found in Regular
Grammars plus can generate nesting (for example:
(nested parenthesis)). These grammars are also
relatively easy for a computer to handle.

Regular

Context−Free

Context−Sensitive

Unrestricted

– p. 4/26

Chomsky Hierarchy

Context-Sensitive: Can express Context-Free and
Regular grammars as well as allowing for non-nested
dependencies between terminals. Computers can only
parse very short sequences generated with this kind of
grammar. Large sequences can easily cripple the
fastest computers of both today and tomorrow...

Regular

Context−Free

Context−Sensitive

Unrestricted

– p. 5/26

Chomsky Hierarchy

Unrestricted: No holds barred. You can not even
determine in advance if a computer can parse the
sequence or not.

Regular

Context−Free

Context−Sensitive

Unrestricted

– p. 6/26

What are Grammars Useful For?

In Computing...

Specification / interpretation of programming languages
(C, Perl, HTML, Database Query Syntax, etc.)

Pattern recognition (regular expressions in Perl)

Speech and language processing

In Biology...

Is a genome really a “Book of Life”?
Does a genome have a grammar?

– p. 7/26

Grammars in Biology

A simple regular grammar that produces strings of purines:

START → PURINE

PURINE → {a, g} PURINE

PURINE → END

PURINESTART END

a, g

– p. 8/26

Grammars in Biology

A stochastic regular grammar for strings of purines:

START
1
→ PURINE

PURINE
0.8
→ {a, g} PURINE

PURINE
0.2
→ END

PURINESTART END

p = 0.2

p = 0.8
a, g

– p. 9/26

HMMs as Grammars

In fact, any Hidden Markov Model can be represented by a
stochastic regular grammar.

Simple HMM example from two weeks ago:

serine high
cysteine . high
glycine ... low
valine low
etc....

END

p = 0.8

START

alanine ... high
leucine ... high
proline low
serine low
etc....

p = 0.7

p = 0.3

p = 0.2

Helix Loop

– p. 10/26

HMMs as Grammars

The equivalent stochastic regular grammar:

START
1
→ α-HELIX

α-HELIX
0.7
→ α-AA α-HELIX

α-AA
high
→ {alanine, leucine, . . . , etc.}

α-AA
low
→ {proline, serine, . . . , etc.}

α-HELIX
0.3
→ LOOP

LOOP
0.2
→ L-AA LOOP

L-AA
high
→ {serine, cysteine, . . . , etc.}

L-AA
low
→ {glycine, valine, . . . , etc.}

LOOP
0.8
→ END

– p. 11/26

HMMs as Grammars

The equivalent stochastic finite state automaton:

END

p = 0.7

{A, L, etc} {P, S, etc}
p = lowp = high

START

p = 0.3 p = 0.8

HELIX

LOOP

p = 0.2

{S, C, etc}
p = high

{G, V, etc}
p = low – p. 12/26

HMMs as Grammars

The problem space defined for HMMs:

Context−Free

Context−Sensitive

Unrestricted

Regular

– p. 13/26

RNA Secondary Structures

Illustration stolen from Peter De Rijk, http://rrna.uia.ac.be/ peter/doctoraat/struct.html

a: Stem/Loop - Hairpin

b: Inernal Loop

c: Bulge

– p. 14/26

RNA Secondary Structures

Illustration stolen from Peter De Rijk, http://rrna.uia.ac.be/ peter/doctoraat/struct.html

d: Junction

e: Stem (long range)

f: Pseudoknot

– p. 15/26

Hairpin

 (((− − − − −)))

While it might be possible to model some hairpin
configurations with a Markov model, we can not model all of
them. We must use a context free grammar.

– p. 16/26

A Context-Free Grammar

A simple context-free grammar for hairpins:

RNA → BASE RNA

BASE → {a, c, g, u}

RNA → STEM RNA

STEM → a STEM u

STEM → u STEM a

STEM → c STEM g

STEM → g STEM c

STEM → RNA

RNA → END

– p. 17/26

Context-Free Grammars

The problem space defined for Context-Free Grammars:

Context−Sensitive

Unrestricted

Context−Free

Regular

– p. 18/26

Pseudoknot

(((− − − (())) − − − −))

It is not possible to model all possible pseudoknot
configurations with a context free grammer. However, it can
be done with a context sensitive grammar.

– p. 19/26

Pseudoknot

(((− − − (())) − − − −))

The problem is that context free grammars take too long to
parse (the program might not finish in our lifetimes). The
algorithm in the paper chooses to model only a subset of
possible configurations.

– p. 20/26

Results

tRNAs: 25 were selected at random from the Sprinzl
tRNA database. The authors emphasize that their
algorithm did not find any spurious pseudonots in any of
the predicted structures (no false positives).

Of 24 with cloverleaf foldings, 24 cloverleaf folds were
found. 15 of them were completely consistent with their
proposed structures. MFOLD only found 19 cloverleaf
foldings with only 14 being completely consistent with
their proposed structures.

The authors emphasized that their algorithm is at least
comparable with MFOLD’s.

– p. 21/26

Results

HIV-1-RT-ligand RNA pseudoknots: They tested 63
SELEX-selected pseudoknotted sequences (between
34 and 47 bases in length). The program found 54
foldings that agreed exactly with structures derived by
comparative analysis.

– p. 22/26

Results

Viral RNAs: Here they tested their program on a grab
bag of viral RNAs including TMV, TYMV (turnip yellow
mosaic virus) and Ribozymes from the Hepatitis Delta
virus (HDV). The program did pretty well (sorry for the
sketchy details here.)

– p. 23/26

NOTES:

The authors mention that their method is sensitive to
the thermodynamic paramters that you give it.
(Increasing the accuracy of these paramters should
increase the accuracy of the method)

There is no decent thermodynamic information for
pseudoknot configurations.

The algorithm can only predict structures for RNAs with
less than 140 bases (4 years ago - considering that
computers are probably several times faster today, it
could probably handle sequences with up to 190
bases).

– p. 24/26

NOTES: (continued)

The aproximation made on the bottom of page 337,
which cause this algorithm to only recognize a subset of
the context-sensitive grammars, prevents it from
handleing parallel β-sheet configurations.

Rivas, E. and Eddy, S.R. (1999) A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J. Mol. Biol., 285, 2053-2068.

– p. 25/26

Main Ideas

Grammars can give us insight about the underlying
structure of a surprisingly large range of natural
phenomena.

Grammars can be used to help categorize problems to
give you an idea of how difficult it is to solve with a
computer.

Grammars can be used to define the limitations of a
given method.

– p. 26/26

