next up previous index
Next: . Up: Derivations For the Curious Previous: .   Index

Click for printer friendely version of this HowTo


Proof of $ F$-Distribution

The goal here is to show that Equation 3.13.21, that is

$\displaystyle \frac
{({\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta})'
\...
...at{\boldsymbol{\beta}})'({\bf Y} -
{\bf X}\hat{\boldsymbol{\beta}})/ (n - p)},
$

has an $ F$-distribution. We will do this by showing that the numerator and the denominator are both $ \sigma^2$ times chi-square variables divided by their degrees of freedom.

Since $ \hat{\boldsymbol{\beta}} = ({\bf X}'{\bf X})^{-1}{\bf X}'{\bf Y}$ is a linear function of Y, and $ {\bf Y}
\sim N({\bf X}\boldsymbol{\beta}, \sigma^2)$, a vector of $ n$ iid random variables, it follows from Equations 3.13.7 and 3.13.8 that $ \hat{\boldsymbol{\beta}}$ is a vector of $ p$ random variables with a $ N(\boldsymbol{\beta}, \sigma^2[{\bf X}'{\bf X}]^{-1})$ distribution. Thus, the transformation, $ {\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta}$, results in $ t$ random variables ($ t$ being the number of rows in C, the number of tests):

$\displaystyle {\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta}
\sim
N_t(...
...\beta} -
\boldsymbol{\theta}, \sigma^2{\bf C}[{\bf X}'{\bf X}]^{-1}{\bf C}').
$

Under the hypothesis that $ {\bf C}\hat{\boldsymbol{\beta}} -
\boldsymbol{\theta} = 0$ we have,

$\displaystyle {\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta}
\sim
N_t(0, \sigma^2{\bf C}[{\bf X}'{\bf X}]^{-1}{\bf C}'),
$

thus,
$\displaystyle [{\bf C}({\bf X}'{\bf X})^{-1}{\bf C}']^{-1/2}({\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta})$   $\displaystyle \sim
N_t(0, \sigma^2)$  
$\displaystyle \sigma^2[{\bf C}({\bf X}'{\bf X})^{-1}{\bf C}']^{-1/2}({\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta})$   $\displaystyle \sim
N_t(0, 1).$ (D.7.1)

Since the sum of $ t$ squared iid $ N(0, 1)$ variables results in a random variable distributed by $ \chi^2_t$, it follows from Equation D.7.1 that,

$\displaystyle ({\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta})' [{\bf C}...
...{\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta})
\sim \sigma^2\chi^2_t.
$

Thus, we have shown that the numerator in Equation 3.13.21 is $ \sigma^2$ times a chi-square random variable divided by its degrees of freedom.

Showing the same thing for the denominator is a little more tricky as it involves some obscure transformations and knowing a few properties of quadratic forms. Instead of trying to explain the details about quadratic forms that would be required for a full proof, we'll simply go as far as we can with what we have and appeal to your sense of intuition.

Let $ \hat{{\bf e}} = {\bf Y} - {\bf X}\hat{\boldsymbol{\beta}}$, an approximation of the error vector, $ \hat{\boldsymbol{\epsilon}}$, thus,

$\displaystyle \hat{{\bf e}}$ $\displaystyle =$ $\displaystyle {\bf Y} - {\bf X}\hat{\boldsymbol{\beta}}$  
  $\displaystyle =$ $\displaystyle {\bf Y} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}'{\bf Y}$  
  $\displaystyle =$ $\displaystyle ({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}'){\bf Y}$  
  $\displaystyle =$ $\displaystyle ({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')({\bf X}\boldsymbol{\beta} + \boldsymbol{\epsilon})$  
  $\displaystyle =$ $\displaystyle ({\bf X}\boldsymbol{\beta} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}...
...beta})
+ ({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')\boldsymbol{\epsilon}$  
  $\displaystyle =$ $\displaystyle ({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')\boldsymbol{\epsilon},$  

and
$\displaystyle ({\bf Y} - {\bf X}\hat{\boldsymbol{\beta}})'({\bf Y} -
{\bf X}\hat{\boldsymbol{\beta}})$ $\displaystyle =$ $\displaystyle [({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')\boldsymbol{\epsilon}]'
[({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')\boldsymbol{\epsilon}]$  
  $\displaystyle =$ $\displaystyle \boldsymbol{\epsilon}'({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')'
({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')\boldsymbol{\epsilon}$ (D.7.2)
  $\displaystyle =$ $\displaystyle \boldsymbol{\epsilon}'
({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\...
...bf X})^{-1}{\bf X}'{\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')
\boldsymbol{\epsilon}$ (D.7.3)
  $\displaystyle =$ $\displaystyle \boldsymbol{\epsilon}'
({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\...
...X})^{-1}{\bf X}'
+ {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')
\boldsymbol{\epsilon}$ (D.7.4)
  $\displaystyle =$ $\displaystyle \boldsymbol{\epsilon}'
({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')
\boldsymbol{\epsilon}.$ (D.7.5)

Equations D.7.2, D.7.3, D.7.4 and D.7.5 make it clear that $ ({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')$ is idempotent, that is,

$\displaystyle ({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')'({\bf I} - {\bf...
... X}'{\bf X})^{-1}{\bf X}') = ({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}').$    

We can determine the rankD.1 of $ ({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')$ from its trace (that is, the sum the elements on the diagonal) since it is idempotent and symmetric. Using a well known property of traces, that is, tr$ (ABC) = $ tr$ (CAB)$, and the fact that X is an $ n \times p$ matrix, we have

$\displaystyle \mathrm{tr}({\bf I}_n - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')$ $\displaystyle =$ $\displaystyle \mathrm{tr}({\bf I}_n) - \mathrm{tr}({\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')$  
  $\displaystyle =$ $\displaystyle n - \mathrm{tr}({\bf X}'{\bf X}({\bf X}'{\bf X})^{-1})$  
  $\displaystyle =$ $\displaystyle n - \mathrm{tr}({\bf I}_p)$  
  $\displaystyle =$ $\displaystyle n - p.$  

Since $ \boldsymbol{\epsilon} \sim N_n(0, \sigma^2)$, it follows that $ \boldsymbol{\epsilon}/\sigma \sim N_n(0, 1)$, thus we can imagine that Equation D.7.5 is the sum of $ n - p$ independent normal random variables. Thus, if we let $ \lambda \sim N(0, 1)$, then
$\displaystyle \sum_{i=1}^{n-p} \epsilon_i\epsilon_i$ $\displaystyle =$ $\displaystyle \sum_{i=1}^{n-p} \sigma\lambda\sigma\lambda$  
  $\displaystyle =$ $\displaystyle \sum_{i=1}^{n-p} \sigma^2\lambda^2 \sim \sigma^2\chi^2_{n-p}$  

Showing that the numerator is independent from the denominator also requires some obscure transformations and requires another result from quadratic forms. Without proof, I will state that the following theorem.

Let Z is a vector of of normally distributed random variables with a common variance and let $ q_1 = {\bf Z}'{\bf A}{\bf Z}$ and $ q_2 = {\bf Z}'{\bf B}{\bf Z}$, where A and B are both $ n \times n$ symmetric matrices. $ q_1$ and $ q_2$ are independently distributed if and only if $ {\bf AB} = 0$.

Now, to show independence, under the hypothesis that C $ \boldsymbol{\beta} = \boldsymbol{\theta}$, can re-write the ends of the numerator with

$\displaystyle ({\bf C}\hat{\boldsymbol{\beta}} - \boldsymbol{\theta})$ $\displaystyle =$ $\displaystyle {\bf C}\hat{\boldsymbol{\beta}} - {\bf C}\boldsymbol{\beta}$  
  $\displaystyle =$ $\displaystyle {\bf C}({\bf X}'{\bf X})^{-1}[{\bf X}'{\bf Y} - {\bf X}'{\bf X}\boldsymbol{\beta}]$  
  $\displaystyle =$ $\displaystyle {\bf C}({\bf X}'{\bf X})^{-1}{\bf X}'[{\bf Y} - {\bf X}\boldsymbol{\beta}]$  
  $\displaystyle =$ $\displaystyle {\bf C}({\bf X}'{\bf X})^{-1}{\bf X}'\boldsymbol{\epsilon}.$  

If we let $ {\bf A} = {\bf X}({\bf X}'{\bf X})^{-1}{\bf C}\left[ {\bf C}({\bf X}'{\bf X})^{-1}{\bf C} \right]^{-1}{\bf C}({\bf X}'{\bf X})^{-1}{\bf X}'$, then we can rewrite the numerator of Equation 3.13.21 as $ \boldsymbol{\epsilon}'{\bf A}\boldsymbol{\epsilon}$. If we let $ {\bf B} = {\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}'$, then we can rewrite the denominator to be $ \boldsymbol{\epsilon}'{\bf B}\boldsymbol{\epsilon}$. Since
$\displaystyle {\bf X}'{\bf B}$ $\displaystyle =$ $\displaystyle {\bf X}({\bf I} - {\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')$  
  $\displaystyle =$ $\displaystyle {\bf X}' - {\bf X}'{\bf X}({\bf X}'{\bf X})^{-1}{\bf X}')$  
  $\displaystyle =$ $\displaystyle {\bf X}' - {\bf X}'$  
  $\displaystyle =$ $\displaystyle 0,$  

$ {\bf AB} = 0$, and thus, under the hypothesis, the numerator and denominator are independent.


next up previous index
Next: . Up: Derivations For the Curious Previous: .   Index

Click for printer friendely version of this HowTo

Frank Starmer 2004-05-19
>